
YOUR LOGO

SHARE2TEACH

FUNCTIONAL & TECHNICAL SPECIFICATIONS

John Klerck

04 July 2024
Version 0.5

VERSION HISTORY

VERSION APPROVED BY REVISION DATE DESCRIPTION OF CHANGE AUTHOR

0.1 Johan Venter 21/05/2024 Func�onal Dra� John Klerck

0.2 John Klerck 29/05/2024 Technical Dra� Johan Venter

0.3 11/06/2024

0.4 02/07/2024

 1

Func�onal & Technical Specifica�ons Document
Authoriza�on Memorandum

I have carefully assessed the Func�onal & Technical Specifica�ons Document for
Share2Teach.

MANAGEMENT CERTIFICATION - Please check the appropriate statement.

______ The document is accepted.

______ The document is accepted pending the changes noted.

______ The document is not accepted.

We fully accept the changes as needed improvements and authorize the ini�a�on of work to
proceed. Based on our authority and judgement, the con�nued opera�on of this system is
authorized.

Name: ___________________________ _________________________________

Project Manager Date

Name: ___________________________ _________________________________

Project Sponsor Date

Name: ___________________________ _________________________________

Project Sponsor Date

 2

Preface 5

Purpose 5
Intended Audience and Per�nent Sec�ons 5
Project Scope 5

Introduc�on 6
Overview 6
Opera�ng Environment 6
User Roles 6
Overview of Func�onal Requirements 7
Overview of Data Requirements 7
Overview of Product and Technical Requirements 8

Applica�on 8
Data Storage 8
Security 8
Backend 8
Architectural Requirements 8

Constraints 8
Assump�ons 9
Dependencies 9
Guidelines 9

User Documenta�on 9

Requirements 10
External Interface Requirements 10

User Interfaces 10
Hardware Interfaces 11
So�ware and Communica�ons Interfaces 11

Func�onal Requirements 12
Non-Func�onal Requirements 14

Performance 14
Safety 14
Security 14
So�ware Quality 15

Product and Technical Requirements 16
Applica�on 16
Data Storage 16
Security 16
Backend 17
Architectural Requirements 17

Constraints 17
Assump�ons 17
Dependencies 17
Guidelines 18

User Documenta�on 18
MoSCoW Breakdown 19

 3

Suggested Technologies 20
Front End Bookmark missing
Back End Bookmark missing
Database Bookmark missing
File Store Bookmark missing

Timeline Outline 34
Appendices 35
Appendix A: Glossary of Terms 36
Appendix B: Issue List 37
Appendix C: Analysis Models 38

 4

Preface

Purpose

This Technical and Func�onal Specifica�ons document serves to inform all project
stakeholders of the agreed upon project scope, func�onality expecta�ons, technical
expecta�ons, and responsibili�es.

Intended Audience and Per�nent Sec�ons

Project Sponsor - Preface, Introduc�on

Project Manager - Preface, Introduc�on, Requirements

Development Team - Preface, Introduc�on, Requirements

Project Scope

This project aims to extend upon the Share2Teach pla�orm by implemen�ng the following
features:

1. Account Crea�on and Secure Sign-in

2. File Uploading & Storage

3. File Modera�on (Gate keeping, reviewing, approving/denying of documents)

4. File Repor�ng

5. Pre-pending Watermark/License to files

6. Allow tagging of Documents when uploading

7. Allow Searching of Documents

8. Implement Analy�cs to monitor user engagement and behaviour

9. Facilitate document ra�ngs by Users.

10. Create an FAQ page

 5

Introduc�on

Overview

Share2Teach is introduced as a vibrant open educa�onal resource (OER) project cra�ed to
nurture a global community of learners and educators. At its core lies the principle that
knowledge should be accessible, collabora�ve, and freely available. Share2Teach is a
testament to the power of collec�ve endeavour, co-cra�ed by students under the guidance
of their facilitators.

The project was ini�ated by Dr. Chantelle Bosch, a dedicated lecturer and sub-area leader for
Blended Learning to Enhance Self-Directed Learning within the Research Unit Self-Directed
Learning at the North-West University (NWU). Alongside her, Prof. Dorothy Laubscher, the
chair-holder of the UNESCO Chair on Mul�-modal Learning and OER, has played a pivotal role
in shaping the vision and trajectory of Share2Teach.

Together, a pla�orm has been cul�vated where diverse educa�onal resources are brought to
life, cra�ed by students for students. From comprehensive semester planning documents to
topic-specific insights, Share2Teach offers a wide array of materials tailored to enhance self-
directed learning through coopera�ve learning and project-based teaching strategies.

Share2Teach serves as a beacon for educa�onal innova�on, extending an invita�on to
educators and learners worldwide to contribute, explore, and evolve within this open,
inclusive community. Joining this journey means par�cipa�ng in the endeavour to transform
learning into a shared adventure, dismantling barriers and erec�ng bridges toward a more
knowledgeable and interconnected world.

Opera�ng Environment

The system will be web-based, and only allow access through a web browser using the internet.
This system will make use of technologies supported by most of the latest desktop and desktop-
like browsers and should allow for a seamless user experience. Mobile compa�bility might be
supported, but the system will not be op�mised for mobile usage.

User Roles

Four user groups have been iden�fied. They are presented as follows:

1. Admin

a) This user role represents the project owner and/or sponsor and the developers
maintaining the system. This user has unrestricted access to all components of the
system. The only unique component that this user has access to is the analy�cs
component. Access to this user role is �ghtly controlled.

2. Moderator

a) This user role represents a subset of subject experts as selected by the project
owner and/or sponsor. This user has access to the following features:

i. Document Searching

ii. Document Viewing

iii. Document Contribu�on

 6

iv. Document Ra�ng

v. Using the FAQ

vi. Modera�ng Documents

3. Educator

a) This user role represents any user who registers for an educator’s account. This
user has access to the following func�onality:

i. Document Searching

ii. Document Viewing

iii. Document Contribu�on

iv. Document Ra�ng

v. Using the FAQ

4. Open Access User

a) This user role represents any user that accesses the site and does not sign in. This
user has access to the following func�onality:

i. Document Searching

ii. Document Viewing

iii. Document Ra�ng

iv. Using the FAQ

Overview of Func�onal Requirements

The following Func�onal Requirements have been s�pulated by the client:

∙Account Crea�on and Secure Sign-in
∙File Uploading & Storage
∙File Modera�on (Gate keeping, reviewing, approving/denying of documents)
∙File Repor�ng
∙Pre-pending Watermark/License to files
∙Tagging of Documents when uploading (Metadata)
∙Searching of Documents
∙Analy�cs to monitor user engagement and behaviour
∙Document Ra�ngs
∙FAQ page

Overview of Data Requirements

The following Data Requirements have been s�pulated by the client:

∙File Storage
∙File Metadata
∙File Ownership
∙Modera�on History
∙User Data - Account Crea�on
∙User Analy�cs

 7

Overview of Product and Technical Requirements

This sec�on is meant to outline the technical requirements for the development of a web
applica�on designed to provide free access to educa�onal resources for students from
various backgrounds. Roles including educators, moderators, open access users and admins
will manage and interact with the content, based on the assigned permissions. It details the
technologies, architecture, and implementa�on strategies to be used by the development
team.

Applica�on
This project will deliver an applica�on that users can interact with in the form of a web app.
This applica�on will replace an exis�ng Google pages applica�on that has a familiar look and
feel. This applica�on will form the main way in which users will interface with the system.

Data Storage
The system needs to store different types of data:

● Document Storage: Uploaded documents will be kept in a file storage system.
● Document Metadata: Informa�on like subject, grade, and keywords, along with

document ra�ngs and storage loca�ons, will be stored in an SQL database.
● User Data: User login details, roles, and ac�vity logs for analy�cs and audits will

be securely stored.
● FAQ: Frequently asked ques�ons and answers will be managed in a database.

Security
1. Verifica�on and Valida�on: This system will make use of HTTP-only cookies, JWTs

and encrypted passwords for making sure that users are only able to access and
modify the content that they are authorized to, and to ensure that user accounts are
secured.

Backend
1. API: This system will provide a server listening for requests from the applica�on.

Request behaviour will be moderated using an API that will abstract away the
complex interac�ons from the applica�on with the data. It should be documented
using a framework like Swagger/OpenAPI.

Architectural Requirements
1. Hos�ng: This applica�on will have to be hosted on a web hos�ng pla�orm that could

either be an in-house bare metal server or a 3rd party service such as AWS, Microso�
Azure, Google cloud.

Constraints

Compa�bility: The applica�on must be a web app, accessible via modern browsers
(Chromium/V8 support required, WebKit/Firefox op�onal).

Open-source 3rd party libraries: All technologies and libraries used for func�onal applica�ons
(such as architectural, framework, and library technologies) with the excep�on of the hos�ng
costs must be fully free, open-source.

Modularity, Extendibility, Expandability: The cons�tuents of the code architecture must be
modular and loosely coupled in support of high loads and future expansion.

Security: The system must adhere to common security standards for secure data storage and

 8

transmission.

Time: The current itera�on of the project has one semester allocated for comple�on, which will
conclude on the 16th of October 2024.

Version Control: The so�ware will use git and GitHub for version control and collabora�on. Each
member needs to prove a similar level of contribu�on to the project.

Assump�ons

∙ The client will be available for regular demonstra�ons and feedback.
∙ The requirements outlined in this document dictate the scope of the project that will not

undergo significant change.
∙ The exis�ng web pla�orm will be extended, but not replaced.
∙ There will exist at least one stable branch that will always be ready for the produc�on

environment.

Dependencies

3rd party libraries: This project will make use of a vast array of 3rd party so�ware for each part of
the system.

Hos�ng pla�orm: The project will require servers for hos�ng the applica�on, the data stores, and
the API gateway. The addi�on of load balancers may become required.

Stakeholder Input: Regular feedback on stakeholder requirements will direct the project
throughout Its lifecycle.

Guidelines

Coding Standards: Code must follow language-specific conven�ons.

Commen�ng and Documenta�on: Concise, descrip�ve comments are expected in the code. All
func�onali�es must be documented thoroughly.

Version Control: GitHub will be used to host the project source code. One branch will be named
something like ‘stable’ that can be easily iden�fied and will always be produc�on ready.

Unit Tes�ng: Write unit tests for non-trivial source code.

User Documenta�on
User Manuals: The user will be provided with a detailed guide on how to use the applica�on that
covers all the previously discussed features.

FAQ: The main site will contain an FAQ sec�on that will provide users with access to frequently
asked ques�ons and their suggested answers. FAQ's should be stored in a database and be

 retrieved for the site.

Video Demonstra�on: The stakeholders and users will be provided with a video that
demonstrates how to use the system and its features.

 9

Requirements

External Interface Requirements

User Interfaces
The following table contains a preliminary list of the iden�fied User Interfaces required in the
system. This list is non-exhaus�ve, and subject to change. The "flow" through the system as
described in the "Links to" column is considered to be the op�mal flow through the system
as currently described. As Developers develop the system, more interfaces may be iden�fied,
which could lead to changes in the flow through interfaces. It is also important to note that
the "flow" is only 'posi�ve' and does not account for when a user may encounter errors or
issues with the system ('nega�ve' flow). It is up to the developers to account for this
'nega�ve' flow.

No User Interface
Name

Descrip�on Links to

1 Landing The main page the user sees. Presents the user with
hyperlinks to the majority of the screens listed
below.

All

2 Subject View This page is subject specific. It allows further
searching/viewing of documents within a subject.

3,4,13,

3 Search
(Results)

This page allows for searching of documents based
on tags created when the documents are uploaded.
It provides op�onal filters along with the search
results.

4,13

4 Contribute This page allows a user to contribute documents
and to tag them while doing so.

13,

5 Other useful
OER's

This page directs the user to other OER resource
pages.

All

6 Contributors This page displays all the contributors to the
project. This page needs to be updated to be
dynamic.

All

7 About Us This page provides informa�on about the project,
the project website, and the project founders.

All

8 Self-Directed
Learning

This page provides links to Self-Directed Learning
resources available to users.

 All

9 Moderate This page will present a user with all the files
uploaded by users, that need to be moderated.

10 Account
Crea�on

This page allows users to create accounts.

11 Password Reset This page allows users to reset their passwords
should they forget them.

12 Analy�cs This page allows administrators to view the

 10

analy�cs informa�on gathered on the website.

13 FAQ This page provides users with answers to some
frequently asked ques�ons.

 All

14 User
Management

This page allows an administrator to change the
access levels of users as well as view all the users on
the system

Hardware Interfaces
The system requires the following Hardware interfaces.

Type Descrip�on Interac�ons

Keyboard-like HID A HID that is used to input keystroke
data into the website’s text fields and
interact with bu�ons.

Mouse-like HID A HID is used to select bu�ons, that
fields, and files on the website.

Selec�ng (Focusing) on
bu�ons and fields.

So�ware and Communica�ons Interfaces
The system requires the following types of So�ware interfaces. This list is non-specific, non-

exhaus�ve, and subject to change as the development process proceeds.

Type Descrip�on Interac�ons
Database Rela�onal or non-rela�onal databases used to store

documents, user data, transac�on logging etc.
Read/Write, back up and
restore.

File Storage System The primary file storage for any documents uploaded to
the system.

Read/Write, back up and
restore.

API RESTful API: Primary access to services and features of the
system will be accessed through this API gateway.

The front-end applica�on
will make requests and
receive responses in JSON.

OAuth2 is suggested for
security.

Hos�ng Opera�ng
System

Ubuntu LTS release: The underlying opera�ng system for
the applica�on and related services.

The Opera�ng System will
be responsible for
providing a run�me for the
en�re applica�on and
servers.

Framework A web applica�on framework for building the frontend
user interface.

UI rendering and user
input for enabling
communica�on with the
API gateway.

Tool Docker: A pla�orm for developing, building and shipping
and running so�ware in containers.

Builds in CI/CD pipeline,
Auto-scaling for load
balancing.

Authen�ca�on Users will need to be authen�cated for access to the
system.

Users will provide their
login creden�als in the
frontend applica�on for
authen�ca�on.

The git version control pla�orm will be used on GitHub to Branching/Push and pull

 11

Version Control facilitate version control and developer collabora�on. requests will be made via a
shell or on GitHub’s
website.

Func�onal Requirements

This list contains the func�onal requirements for the system to be developed during the
project's execu�on. This list is non-exhaus�ve and should be expanded upon as the
developers iden�fy a need.

Purpose/Descrip�on Account Crea�on

Inputs FName, LName, Email, Password, Affilia�on (opt), Creden�als
(Opt)

Processing Required Field check, Email-type check, password match check

Outputs Failure: Required Fields empty, invalid email type, passwords
don’t match.

Success: Account crea�on successful

Purpose/Descrip�on Sign In

Inputs Email, Password

Processing Required Field Check, email type check, user exist check,
password match check

Outputs Failure: Email or password does not match; required fields empty

Success: sign in successful.

Purpose/Descrip�on File Uploading & Tagging

Inputs User File, File type, file name, subject, grade, date created,

Processing Required field check, file size check, file type check,

Outputs Failure: File too large, incorrect file type, required fields empty,
file upload failed,

Success: file upload successful.

Purpose/Descrip�on File Storage

Inputs none

Processing File storage

Outputs Failure: Server-side logging

Success: Server-side logging

 12

Purpose/Descrip�on File Modera�on

Inputs File approval/disapproval, comments

Processing upda�ng file approval status

Outputs Failure: Could not complete ac�on

Success: Ac�on Complete

Purpose/Descrip�on File Ra�ng

Inputs 0-5 star ra�ng for document

Processing Ra�ng entry made in database

Outputs Ra�ng visible to user

Purpose/Descrip�on File Repor�ng

Inputs Report bu�on selected, reason selected

Processing Report entry made in database

Outputs “Report submi�ed” message

Purpose/Descrip�on Watermark/License adding

Inputs File uploaded

Processing Watermark/License is Prepended

Outputs File with watermark/license is saved in file storage

Purpose/Descrip�on Document Search

Inputs Keywords entered by user

Processing Database tags searched for keywords.

Outputs Files presented to user.

Purpose/Descrip�on User Analy�cs

Inputs User ac�ons on system

Processing Data rela�ng to ac�ons wri�en to database.

Outputs none

Purpose/Descrip�on FAQ

Inputs none

 13

Processing FAQ's Fetched from Database

Outputs List of FAQ’s with answers provided

Purpose/Descrip�on Password Reset

Inputs Password Reset request, email address, verifica�on
cookie/session/token, new password

Processing Email verifica�on, token verifica�on and password match
verifica�on

Outputs Failure: Failure message.

Success: Email Verifica�on Message to generate token, success
Message

Non-Func�onal Requirements

Performance
Scalability: The system should be able to scale horizontally to handle a growing
number of users and increased data load without performance degrada�on. This
includes the ability to add more instances of the web server and database as
needed.

Throughput: The system should be able to support mul�ple concurrent users
without a significant drop in performance.

Caching: Caching mechanisms should be implemented to reduce server load and
improve response �mes.

Safety
Data Integrity: Ensure all requests are processed accurately and data is consistently
maintained across the system. Implement database constraints and transac�onal integrity
checks.

Fault Tolerance: The system should be able to recover from hardware or so�ware failures.
This includes automa�c failover mechanisms and redundancy in cri�cal components.

Error Handling: Implement comprehensive error handling throughout the applica�on. All
errors should be logged, and appropriate user-friendly messages should be displayed to the
users.

Backups: Regular backups of all cri�cal data should be performed and stored securely. Ensure
that a disaster recovery plan is in place and tested periodically.

Security
Authen�ca�on and Authoriza�on: All users must be authen�cated using a secure
authen�ca�on mechanism (e.g., OAuth2, JWT). Implement role-based access control
to ensure users only have access to the resources they are authorized to use.

Data Encryp�on: All sensi�ve data, both at rest and in transit, must be encrypted
using industry-standard encryp�on protocols).

Security Audits: Security audits and penetra�on tes�ng can be used to iden�fy and
mi�gate vulnerabili�es. Follow best prac�ces and comply with relevant security

 14

standards and regula�ons.

So�ware Quality
Code Quality: Ensure high code quality by following coding standards and best
prac�ces. Conduct regular code reviews.

Tes�ng: Implement a comprehensive tes�ng strategy that includes unit tests,
integra�on tests, system tests, and user acceptance tests. Aim for high test coverage
to ensure the reliability of the codebase.

Con�nuous Integra�on/Con�nuous Deployment (CI/CD): U�lize CI/CD pipelines to
automate the build, tes�ng, and deployment processes. This helps in detec�ng and
fixing issues early and ensures that changes are delivered quickly and reliably.

Documenta�on: Maintain up-to-date and comprehensive documenta�on for the
en�re system, including code comments, API documenta�on, user manuals, and
opera�on guides.

Usability: Design the applica�on with a user-centric approach, ensuring that it is
intui�ve and easy to use. Conduct usability tes�ng to gather feedback and make
necessary improvements.

Maintainability: Ensure the system is easy to maintain by modularizing the code,
following design pa�erns, and keeping dependencies up to date. Document the
architecture and design decisions to aid future maintenance efforts.

 15

Product and Technical Requirements

This sec�on is meant to outline the technical requirements for the development of a web
applica�on designed to provide free access to educa�onal resources for students from
various backgrounds. Roles, including educators, moderators, open access users, and admins,
will manage and interact with the content, based on the assigned permissions. It details the
technologies, architecture, and implementa�on strategies to be used by the development
team.

The system will provide a web applica�on that the primary users will interact with for
downloading, uploading, and approving documents. These documents can be tagged with
descrip�ons and other relevant informa�on that will be used to index and iden�fy the
documents in a central data store.

The system will implement a user access and upload policy that will allow only authen�cated
users to approve document upload requests. In this way, document quality can be ensured.
This will require users to sign up to the system and apply for moderator privileges. This user
data will be stored in the data store, and any sensi�ve user informa�on will be encrypted.

For all data processing and prepara�on, a backend server will be hosted that will be
responsible for all data processing and aggrega�on. This backend server will provide access
to data in the form of an API gateway.

The en�re system will need to be hosted on a pla�orm that will give all the users access to
the system. Some op�ons are available for in-house hos�ng as well as cloud providers.

Applica�on
This project will deliver an applica�on that users can interact with in the form of a web app.
This applica�on will replace the exis�ng Google pages applica�on but retain the familiar look
and feel. This applica�on will form the main way in which users will interface with the
system.

Data Storage
The system will require persistent storage for the following:

1. Document Storage: All uploaded documents will need to be stored in a file storage
system.

2. Document Metadata: When a user is in the process of uploading a document, they
will add some metadata about the document such as the subject group, grade, key
words etc. This data, the document ra�ngs and a reference to the loca�on of the
actual document in the file storage system will need an entry in a database. The
database paradigm suggested for this is SQL, since we are dealing with highly
structured data, where data aggrega�on, sor�ng and grouping will be very important
when users search and filter for documents.

3. User Data: All user-related content, such as their login informa�on and the
associated roles need to be stored for user verifica�on and iden�fica�on. For
analy�cs and audi�ng purposes, all user ac�ons will be recorded in a database with
�mestamps and ac�ons.

4. FAQ: Frequently asked ques�ons and answers to these will be stored in a database.

Security
2. Verifica�on and Valida�on: This system will make use of HTTP-only cookies, JWTs

and encrypted passwords for making sure that users are only able to access and
modify the content that they are authorized to, and to ensure that user accounts are

 16

secured.

Backend
2. API Gateway: This system will provide a server listening for requests from the

applica�on. Request behaviour will be moderated using an API gateway that will
abstract away the complex interac�ons from the applica�on with the data.

Architectural Requirements
2. Hos�ng: This applica�on will have to be hosted on a web hos�ng pla�orm that could

either be an in-house bare metal server (your laptop) or a 3rd party service such as
AWS, Microso� Azure, Google cloud.

Constraints

Compa�bility: The applica�on must be a web app, accessible via modern browsers.

Open-source 3rd party libraries: All technologies and libraries used for func�onal applica�ons
(such as architectural, framework, and library technologies) except the hos�ng costs must be fully
free, open-source.

Scalability: The cons�tuents of the architecture must be modular and loosely coupled in support
of high loads and future expansion.

Security: The system must adhere to common security standards for secure data storage and
transmission.

Budget: The budget allocated will determine the hos�ng pla�orm for the project.

Time: The current itera�on of the project has one semester allocated for comple�on, which will
conclude on the 16th of October 2024.

Version Control: The so�ware will use git and GitHub for version control and collabora�on.

Assump�ons

∙ The client will be available for regular demonstra�ons and feedback.
∙ The requirements outlined in this document dictate the scope of the project that will not

undergo significant change.
∙ The exis�ng web pla�orm will be extended, but not replaced.
∙ There will exist at least one stable branch that will always be ready for the produc�on

environment.

Dependencies

3rd party libraries: This project will make use of a vast array of 3rd party so�ware for each part of
the system.

Hos�ng pla�orm: The project will require servers for hos�ng the applica�on, the data stores and
the API gateway. The addi�on of load balancers may become required.

Stakeholder Input: Regular feedback on the stakeholder requirements will direct the project
throughout Its lifecycle.

 17

Guidelines

Coding Standards: Code must follow language-specific conven�ons.

Commen�ng and Documenta�on: Concise, descrip�ve comments are expected in the code. All
func�onali�es must be documented thoroughly.

Version Control: GitHub will be used to host the project source code. One branch will be named
something like ‘stable’ that can be easily iden�fied and will always be produc�on ready.

Unit Tes�ng: Write unit tests for non-trivial source code.

User Documenta�on
User Manuals: The user will be provided with a detailed guide on how to use the applica�on that
covers all the previously discussed features.

FAQ: The main site will contain an FAQ sec�on that will provide users with access to frequently
asked ques�ons and their suggested answers. FAQ's should be stored in a database and be
retrieved for the site.

Video Demonstra�on: The stakeholders and users will be provided with a video that
demonstrates how to use the system and its features.

 18

MoSCoW Breakdown

Categories Item Category Weight
Must Have User Verifica�on

File Uploading
File Storage
Document Repor�ng
File Metadata capturing
Document Searching
Document ra�ngs
FAQ Page

40%

Should Have File Modera�on
Automa�c Metadata genera�on
PDF Conversion
Pre pending Licence

35%

Could Have Docker/Podman Deployment
Google Analy�cs integra�on
Full WebKit & Firefox Support

25%

Won't Have Firebase/Superbase Backend - <100%

 19

Suggested Technologies

Popular Tech Stacks

As third-year students delving into so�ware engineering, it's crucial to appreciate the
significance of exploring and understanding new technologies. The tech landscape is ever-
evolving, and staying updated with the latest tools and frameworks can drama�cally
influence your ability to create efficient, scalable, and maintainable applica�ons. Here's why
it's vital and how you can navigate this explora�on effec�vely.

Pure Frontend (No serving of templates from backend)

● Web Based:

○ React

○ Angular

○ Vue

○ Svelte

○ Astro

○ HTMX

○ Solid

○ Remix

● Mobile:

○ React na�ve

○ Android Java

○ Android Kotlin

○ Swi� IOS (BEWARE YOU NEED A MAC AND IPHONE TO WORK IN
THIS BECAUSE YOU NEED XCODE)

● Cross pla�orm:

○ Ionic

○ Flu�er

○ .Net MAUI

○ Kotlin Mul� pla�orm

 20

● Server side or MVC frameworks are a hybrid approach where the frontend
and backend are intertwined into one codebase and there is �ght coupling,
which has upsides and downsides depending on the situa�on or context

○ Laravel

○ Django

○ Ruby on Rails

○ Spring MVC Thymeleaf (Spring has a lot of projects with the word
spring, so the MVC thymeleaf is important)

○ Golang with Templ

Pure backend

● Expressjs

● Fas�fy

● Spring boot

● .NET

● Golang Gin

● Golang CHI

● Python Flask

Database choices

When choosing a database, it's crucial to consider how the specific use case affects
our decision:

Performance
● Pros: Some databases, like Redis or Cassandra, are op�mized for high-speed read

and write opera�ons, making them suitable for real-�me applica�ons.

● Cons: High-performance databases might require more resources or be more
complex to manage.

Scalability
● Pros: NoSQL databases like MongoDB and Cassandra are designed to scale

horizontally, easily handling large amounts of data and high traffic.

● Cons: Rela�onal databases like PostgreSQL or MySQL might require more complex
sharding or replica�on strategies to scale effec�vely.

Consistency vs. Availability
● Consistency: Rela�onal databases ensure data consistency but might face availability

issues under high load.

 21

○ Pros: Ensures data accuracy and integrity.

○ Cons: Might not be as performant or available in distributed systems.

● Availability: NoSQL databases o�en priori�ze availability and par��on tolerance
over consistency (as per the CAP theorem).

○ Pros: Be�er performance and up�me.

○ Cons: Poten�al data inconsistencies (eventual consistency).

Data Model Flexibility
● Pros: Document-based databases like MongoDB offer flexible schemas, allowing for

easy updates and changes to the data model.

● Cons: This flexibility might lead to inconsistent data structures if not managed
properly.

Query Complexity and Support
● Pros: SQL databases provide powerful query capabili�es with joins, transac�ons, and

complex queries.

● Cons: NoSQL databases might require more effort to perform complex queries and
may lack advanced querying features.

Transac�on Support
● Pros: SQL databases support ACID (Atomicity, Consistency, Isola�on, Durability)

transac�ons, ensuring reliable and consistent transac�ons.

● Cons: NoSQL databases may not fully support ACID transac�ons, focusing on
eventual consistency and par��on tolerance instead.

Ecosystem and Tooling
● Pros: Mature databases like MySQL, PostgreSQL, and MongoDB have robust

ecosystems, extensive documenta�on, and a wide range of tools for management
and monitoring.

● Cons: Newer or niche databases might lack comprehensive tooling and community
support.

Cost
● Pros: Open-source databases like MySQL and PostgreSQL can reduce licensing costs,

while managed database services (e.g., AWS RDS, Google Cloud Firestore) can lower
opera�onal overhead.

● Cons: Proprietary databases or large-scale managed services might incur higher
costs, par�cularly as data and traffic grow.

Use Case Suitability
● Pros: Some databases are tailored for specific use cases, such as graph databases

(e.g., Neo4j) for rela�onship-focused data or �me-series databases (e.g., InfluxDB)
for �me-stamped data.

● Cons: General-purpose databases might not be op�mized for specific use cases,
leading to subop�mal performance.

 22

Analy�cs and Data Analysis
● Pros: Databases like PostgreSQL and MySQL offer strong analy�cal capabili�es with

advanced SQL func�ons, while specialized databases like Amazon Redshi� or Google
BigQuery are designed for large-scale analy�cs.

● Cons: General-purpose databases may struggle with performance under heavy
analy�cal workloads compared to specialized solu�ons.

ETL (Extract, Transform, Load) Processes
● Pros: Databases designed for ETL, like Apache Hadoop or Amazon Redshi�, can

efficiently handle large volumes of data transforma�on and loading. Tools like
Apache NiFi or Talend integrate well with various databases for seamless ETL
workflows.

● Cons: Using a general-purpose database for ETL can lead to performance bo�lenecks
and increased complexity in managing the data pipeline.

Understanding these trade-offs is crucial for us to make informed decisions. The right
database choice can significantly impact our applica�on's performance, scalability,
and maintainability. We need to evaluate our project's specific needs, such as data
volume, query complexity, and consistency requirements, to select the most suitable
database technology. By considering these factors, we can ensure that we make the
best choice for our par�cular use case. For instance, if our company wants to
perform extensive data analy�cs and ETL processes, we might priori�ze databases
with strong analy�cal capabili�es and efficient ETL support.

Things to consider

When deciding on a Technology it is key to look at usage first of all, because industry usage
means there are big corporates backing a piece of technology, and in the case of frontend
this is more crucial because there are many many many ways of taking on problems, and
each framework/library comes with its own set of problems and challenges.

Example:

React is simple to pick up and simple to use, but complexity arises quickly when following a
pure component-based design, which then causes state management issues where you will
need to learn Redux. Conversely a Framework like Next or Angular is harder to just pick up ,
but has more features baked into to framework and follows a very opinionated approaches.

You know how fast you learn and you know what your appe�te is for challenges, pick
accordingly and read about different frameworks, as a so�ware engineer you will be put in
situa�ons where you will need to make decisions based on how a project is evolving, and
your project manager and product owners have no technical knowledge and will look to
engineers to make educated decisions, and in smaller companies you will not have the luxury
of a solu�ons architect or competent experienced technical lead. Situa�ons such as caching,
database choices, cloud provider choices , logging monitoring, metrics, Test driven
development, domain driven development all have upsides and downsides and
understanding the tool and the various implementa�ons that are aiming at solving the same
problems allows you to make good educated choices and expands your capabili�es as an
engineer.

 23

When deciding on a technology stack, several factors come into play:
1. Usage and Industry Support

a. Opt for widely-used technologies as they typically have robust
community support and backing by large corpora�ons. This ensures
be�er resources, regular updates, and reliability.

2. Learning Curve
a. Assess the complexity of the technology. Some, like React, are

straigh�orward ini�ally but become complex with advanced usage.
Others, like Angular, might be harder to pick up but offer extensive
built-in features.

3. Project Requirements and Context

a. Consider the specific needs of your project. For instance, server-side
rendering (SSR) might be crucial for SEO in web apps, making
frameworks like Next.js desirable.

4. Personal and Team Capabili�es

a. Reflect on your learning speed and willingness to tackle challenges.
Your choice should align with your team's strengths and the project's
requirements.

5. Future Scalability and Maintainability
a. Technologies should not only meet current needs but also scale with

your project. Consider long-term maintenance and poten�al for future
enhancements.

Resources:

● Web Based:

○ React

■ h�ps://www.youtube.com/watch?v=MHn66JJH5zs&list=PLSsAz5wf2l
kK_ekd0J__44KG6QoXetZza

○ Angular:

■ h�ps://www.youtube.com/watch?v=3qBXWUpoPHo&t=3060
1s

○ Vue:

■ h�ps://www.youtube.com/watch?v=pgWZLS75Nmo&t=16s

○ Svelte:

■ h�ps://www.youtube.com/watch?v=wWRhX_Hzyf8

 24

https://www.youtube.com/watch?v=MHn66JJH5zs&list=PLSsAz5wf2lkK_ekd0J__44KG6QoXetZza
https://www.youtube.com/watch?v=MHn66JJH5zs&list=PLSsAz5wf2lkK_ekd0J__44KG6QoXetZza
https://www.youtube.com/watch?v=MHn66JJH5zs&list=PLSsAz5wf2lkK_ekd0J__44KG6QoXetZza

○ Astro:

■ h�ps://www.youtube.com/watch?v=F2pw1C9eKXw&list=PLoq
ZcxvpWzzeRwF8TEpXHtO7KYY6cNJeF&index=1

○ Solid:

■ h�ps://www.youtube.com/watch?v=uPXn9S31o7Q&list=PL4c
UxeGkcC9gU_GvFygZFu0aBysPilkbB

● Mobile:

○ React na�ve:

■ h�ps://www.youtube.com/watch?v=ZBCUegTZF7M

○ Android Java

■ h�ps://www.youtube.com/watch?v=cGi9wL8Esw4&list=PL6Q9
UqV2Sf1i4eRuX�WU9nPJ5YldLXbG

○ Android Kotlin

■ h�ps://www.youtube.com/watch?v=BxM2DayeOBE

○ Swi� IOS :

■ h�ps://www.youtube.com/watch?v=fTGA8cjbf5Y

● Cross pla�orm:

○ Ionic

■ h�ps://www.youtube.com/watch?v=K7ghUiXLef8

○ Flu�er

■ h�ps://www.youtube.com/watch?v=VPvVD8t02U8&t=21341s

○ .Net MAUI

■ h�ps://www.youtube.com/watch?v=n3tA3Ku65_8

○ Kotlin Mul� pla�orm

● Server side or MVC frameworks are a hybrid approach where the frontend
and backend are intertwined into one codebase and there is �ght coupling,
which has upsides and downsides depending on the situa�on or context

○ Laravel

■ h�ps://www.youtube.com/watch?v=SqTdHCTWqks

 25

○ Django

■ h�ps://www.youtube.com/watch?v=ZpKl3U-
arN8&list=PL4cUxeGkcC9iqfAag3a_BKEX1N43uJutw

○ Ruby on Rails

■ h�ps://www.youtube.com/watch?v=Z0Xn1iiiEZE

○ Spring MVC Thymeleaf (Spring has a lot of projects with the word
spring, so the MVC thymeleaf is important)

■ h�ps://www.youtube.com/watch?v=VqptK6_icjk&list=PL82C6-
O4XrHejlASdecIsroNEbZFYo_X1

Pure backend

● Expressjs

○ h�ps://www.youtube.com/watch?v=P6RZfI8KDYc&list=PL_cUvD4qzbk
wjmjy-KjbieZ8J9cGwxZpC

● Spring boot

○ h�ps://www.youtube.com/watch?v=Nv2DERaMx-
4&list=PLzUMQwCOrQTksiYqoumAQxuhPNa3HqasL

● .NET

○ h�ps://www.youtube.com/watch?v=AhAxLiGC7Pc&t=1674s

● Golang Gin

○ h�ps://www.youtube.com/watch?v=oiPdFkMZ58Q&list=PLDZ_9qD1h
kzMdre6oedUdyDTgoJYq-_AY

● Golang CHI

○ h�ps://www.youtube.com/watch?v=JBrF5yviZKE

● Python Flask

○ h�ps://www.youtube.com/watch?v=z3YMz-Gocmw

Database

● Choosing the right database:

○ h�ps://www.youtube.com/watch?v=kkeFE6iRfMM

○ h�ps://www.youtube.com/watch?v=W2Z7�CLSTw

○ h�ps://www.youtube.com/watch?v=9mdadNspP_M

 26

https://www.youtube.com/watch?v=VqptK6_icjk&list=PL82C6-O4XrHejlASdecIsroNEbZFYo_X1
https://www.youtube.com/watch?v=VqptK6_icjk&list=PL82C6-O4XrHejlASdecIsroNEbZFYo_X1
https://www.youtube.com/watch?v=VqptK6_icjk&list=PL82C6-O4XrHejlASdecIsroNEbZFYo_X1
https://www.youtube.com/watch?v=z3YMz-Gocmw
https://www.youtube.com/watch?v=kkeFE6iRfMM
https://www.youtube.com/watch?v=W2Z7fbCLSTw
https://www.youtube.com/watch?v=9mdadNspP_M

SOME EXTRAS FOR THOSE INTERESTED

○ Designing good API’s

■ h�ps://www.youtube.com/watch?v=_gQaygjm_hg

○ So�ware acronyms:

■ h�ps://www.youtube.com/watch?v=cTyZ_hbmbDw

○ What is an API?

■ h�ps://www.youtube.com/watch?v=ByGJQzlzxQg

○ What is full stack development:

■ h�ps://www.youtube.com/watch?v=7NaeDBTRY1k

○ Ver�cal vs horizontal scaling of an app for higher load:

■ h�ps://www.youtube.com/watch?v=dvRFHG2-uYs

○ How git actually works:

■ h�ps://www.youtube.com/watch?v=e9lnsKot_SQ

○ What is Docker:

■ h�ps://www.youtube.com/watch?v=Cs2j-Rjqg94

○ Docker crash course:

■ h�ps://www.youtube.com/watch?v=pg19Z8LL06w&t=23s

○ AWS cloud prac��oner Course:

■ h�ps://www.youtube.com/watch?v=NhDYbskXRgc&t=6919s

○ What is Cloud?

■ h�ps://www.youtube.com/watch?v=mxT233EdY5c

○ What is AWS?

■ h�ps://www.youtube.com/watch?v=a9__D53WsUs

○ What is Azure:

■ h�ps://www.youtube.com/watch?v=oPSHs71mTVU

○ Azure cloud fundamentals cer�fica�on course:

■ h�ps://www.youtube.com/watch?v=5abffC-K40c

 27

https://www.youtube.com/watch?v=_gQaygjm_hg
https://www.youtube.com/watch?v=cTyZ_hbmbDw
https://www.youtube.com/watch?v=ByGJQzlzxQg
https://www.youtube.com/watch?v=7NaeDBTRY1k
https://www.youtube.com/watch?v=dvRFHG2-uYs
https://www.youtube.com/watch?v=e9lnsKot_SQ
https://www.youtube.com/watch?v=Cs2j-Rjqg94
https://www.youtube.com/watch?v=pg19Z8LL06w&t=23s
https://www.youtube.com/watch?v=NhDYbskXRgc&t=6919s
https://www.youtube.com/watch?v=mxT233EdY5c
https://www.youtube.com/watch?v=a9__D53WsUs
https://www.youtube.com/watch?v=oPSHs71mTVU
https://www.youtube.com/watch?v=5abffC-K40c

○ Devops vs Site reliability vs Pla�orm engineering

■ h�ps://www.youtube.com/watch?v=an8SrFtJBdM

Free STUFF for students and other free stuff:

○ Github Developer pro student pack

■ h�ps://github.com/educa�on/students

○ Intellij free student licenses:

■ h�ps://www.jetbrains.com/community/educa�on/#students

○ Free AWS skill badges from comple�ng courses:

■ h�ps://aws.amazon.com/educa�on/awseducate/

○ Azure student Resources:

■ h�ps://azure.microso�.com/en-
us/resources/students?ac�vetab=pivot:githubtab

○ Google cloud skill badges:

■ h�ps://cloud.google.com/learn/training/creden�als

 28

https://www.youtube.com/watch?v=an8SrFtJBdM
https://github.com/education/students
https://www.jetbrains.com/community/education/#students
https://aws.amazon.com/education/awseducate/
https://azure.microsoft.com/en-us/resources/students?activetab=pivot:githubtab
https://azure.microsoft.com/en-us/resources/students?activetab=pivot:githubtab
https://azure.microsoft.com/en-us/resources/students?activetab=pivot:githubtab
https://cloud.google.com/learn/training/credentials

Example Stacks, but this is interchangeable

Frontend Backend Database File Storage Comments
React Node.js with

Express
MongoDB SeaweedFS Pros: Highly popular,

large community
support, fast
development with
JavaScript. Cons: Can
become complex with
state management,
callback hell in Node.js.

Angular Spring Boot
(Java)

PostgreSQL Ceph Pros: Full-featured
framework, strong typing
with TypeScript, robust
backend with Spring
Boot. Cons: Steeper
learning curve, heavy-
weight compared to
other frameworks.

Vue.js Laravel (PHP) MySQL Nextcloud Pros: Easy to learn,
flexible, Laravel offers
elegant syntax and tools.
Cons: Less corporate
backing compared to
React/Angular, Laravel
can be slower than some
alterna�ves.

Flu�er Node.js with
Express

MySQL Garage Pros: Cross-pla�orm
mobile development,
fast performance, real-
�me database with
Firebase. Cons: S�ll
rela�vely new, less
mature than React
Na�ve.

React
Na�ve

Node.js with
Express and SSR
using Next.js

MongoDB SeaweedFS Pros: Cross-pla�orm
development, server-side
rendering with Next.js,
popular and widely used.
Cons: Complexity with
SSR, learning curve for
Next.js.

Svelte Python Flask MySQL Nextcloud Pros: Small and fast, easy
to learn, lightweight
backend with Flask.
Cons: Less mature
ecosystem, less
corporate backing.

 29

Ionic with
Angular

.NET Core SQL Server Ceph Pros: Cross-pla�orm
development, enterprise
support with .NET,
powerful SQL Server.
Cons: Angular has a
steeper learning curve,
.NET can be heavy-
weight.

HTMX Django (Python) PostgreSQL Nextcloud Pros: Simple frontend
integra�on, beginner-
friendly Django, efficient
and scalable. Cons:
Limited features
compared to modern JS
frameworks, �ght
coupling.

Astro Golang with
Fiber

PostgreSQL Garage Pros: New but
straigh�orward, highly
performant backend with
Go. Cons: Less mature
ecosystem, limited
community support.

Vue.js Ruby on Rails MySQL Ceph Pros: Easy to learn,
conven�on over
configura�on in Rails,
fast prototyping. Cons:
Performance may not
match that of other
backend frameworks,
less flexible.

React
Na�ve

Golang Gin PostgreSQL SeaweedFS Pros: Cross-pla�orm
mobile apps, highly
performant Go backend.
Cons: Learning curve
with Go, fewer libraries
and tools compared to
Node.js.

Angular ASP.NET Core SQL Server Garage Pros: Enterprise-level
support, robust and
scalable, TypeScript.
Cons: Steeper learning
curve, heavy-weight
framework.

Svelte Rust with Rocket PostgreSQL Nextcloud Pros: High performance,
memory safety with
Rust, easy frontend with
Svelte. Cons: Steeper
learning curve for Rust,
smaller community.

 30

Flu�er Golang with Chi PostgreSQL Garage Pros: Cross-pla�orm
mobile, simple and
performant backend.
Cons: Flu�er's learning
curve, less mature
ecosystem.

Ionic PHP with
Symfony

MySQL Ceph Pros: Cross-pla�orm
development, flexible
PHP backend with
Symfony. Cons: PHP may
be less performant,
steeper learning curve
with Symfony.

Vue.js Node.js with
Fas�fy

MongoDB SeaweedFS Pros: Fast and
lightweight, easy
integra�on with Vue.
Cons: Smaller
community compared to
Express, learning curve
with Fas�fy.

React Kotlin with Ktor PostgreSQL Ceph Pros: Modern JVM
language, highly
performant, strong
typing. Cons: Newer
ecosystem, fewer
resources and libraries.

Other Technologies to consider:

● Frontend: Svelte.

● Backend: Flask (Python), Springboot (Java, Kotlin, Groovy, you can choose).

● File Storage:, Ceph, Garage: h�ps://garagehq.deuxfleurs.fr/

● Full Stack: Ruby on Rails, ASP .NET MVC.

● Android: Kotlin

● Apple: Swi�

Please consider using some of these. Otherwise, at least use some combina�on of these
technologies.

Understanding the trade-offs when choosing a tech stack is crucial for several
reasons:

1. Informed Decision Making

 31

a. Engineers o�en face decisions that impact the en�re project lifecycle.
Being aware of the pros and cons helps in making choices that align
with project goals and constraints.

2. Adaptability

a. The tech landscape changes rapidly. Familiarity with mul�ple
technologies enhances your ability to adapt and integrate new
solu�ons as needed.

3. Op�miza�on
a. Different stacks offer varying levels of performance, scalability, and

maintainability. Knowing these nuances allows you to op�mize your
applica�on for be�er user experience and resource management.

4. Leadership and Guidance

a. As you progress in your career, you'll be expected to guide less
experienced team members. A broad understanding of tech stacks
empowers you to mentor effec�vely and lead projects confidently.

In summary, exploring new technologies enriches your skill set and equips you to
tackle diverse challenges. Embrace this explora�on with curiosity and cri�cal thinking
to become a versa�le and proficient so�ware engineer.

 32

 33

Timeline Outline

Date Work to be evaluated
27 October Swagger/OpenAPI BackEnd

Database
File Storage
Testable Endpoints
+ Best Prac�ces
+ Use of Project Management Tools

16 October UI Design (Wireframes)
UI Crea�on
UI & API Interacts

 User Analy�cs
+ Best Prac�ces
+ Use of Project Management Tools

 34

Appendices

Appendix
Number

Document Name Descrip�on Loca�on

A Glossary of Terms A Glossary containing all unique
terms and acronyms used within
this document that pertain to this
project.

B Issue List A list of outstanding issues within
this document to be rec�fied
before the next revision.

C Analysis Models A document containing various
diagrams generated during the
systems analysis and design phases

 35

Appendix A: Glossary of Terms

Term Defini�on

HID Human Interface Device. A method by which a human
interacts with an electronic informa�on system either by
inpu�ng data or receiving output.

Metadata Data that provided informa�on about one or more aspects
 of data. Used to summarise basic informa�on about data

 to make tracking and manipulate data easier.

 36

Appendix B: Issue List

Date Issue Descrip�on Version Resolved

 37

Appendix C: Analysis Models

 38

 39

