Share2Teach

Open Educational Resources

FUNCTIONAL & TECHNICAL SPECIFICATIONS

John Klerck

04 July 2024

Version 0.5

VERSION APPROVED BY REVISION DATE = DESCRIPTION OF CHANGE AUTHOR

0.1 Johan Venter 21/05/2024 Functional Draft John Klerck
0.2 John Klerck 29/05/2024 Technical Draft Johan Venter
0.3 11/06/2024

0.4 02/07/2024

Functional & Technical Specifications Document

Authorization Memorandum

| have carefully assessed the Functional & Technical Specifications Document for
Share2Teach.

MANAGEMENT CERTIFICATION - Please check the appropriate statement.

The document is accepted.

The document is accepted pending the changes noted.

The document is not accepted.

We fully accept the changes as needed improvements and authorize the initiation of work to
proceed. Based on our authority and judgement, the continued operation of this system is
authorized.

Name:
Project Manager Date
Name:
Project Sponsor Date
Name:
Project Sponsor Date

Preface

Purpose

Intended Audience and Pertinent Sections

Project Scope

Introduction

Overview

Operating Environment
User Roles

Overview of Functional Requirements,

Overview of Data Requirements

Overview of Product and Technical Requirements

Application

Data Storage

Security

Backend

Architectural Requirements

Constraints,

Assumptions

Dependencies

Guidelines

User Documentation

O N0 N0 N0 O 0w 0 NN OO0 N

Requirements 10
External Interface Requirements 10
User Interfaces 10
Hardware Interfaces 11
Software and Communications Interfaces 11
Functional Requirements 12
Non-Functional Requirements 14
Performance 14
Safety 14
Security 14
Software Quality 15
Product and Technical Requirements 16
Application 16
Data Storage 16
Security 16
Backend 17
Architectural Requirements 17
Constraints 17
Assumptions 17
Dependencies 17
Guidelines 18
User Documentation 18
MoSCoW Breakdown 19

20

Suggested Technologies
Front End

Back End

Database

File Store

Timeline Outline

Bookmark missing
Bookmark missing
Bookmark missing
Bookmark missing

34

Appendices

35

Appendix A: Glossary of Terms
Appendix B: Issue List

36

37

Appendix C: Analysis Models

38

Preface

Purpose

This Technical and Functional Specifications document serves to inform all project
stakeholders of the agreed upon project scope, functionality expectations, technical
expectations, and responsibilities.

Intended Audience and Pertinent Sections

Project Sponsor - Preface, Introduction
Project Manager - Preface, Introduction, Requirements

Development Team - Preface, Introduction, Requirements

Project Scope
This project aims to extend upon the Share2Teach platform by implementing the following
features:

Account Creation and Secure Sign-in

File Uploading & Storage

File Moderation (Gate keeping, reviewing, approving/denying of documents)

File Reporting

1.

2.

3

4

5. Pre-pending Watermark/License to files

6. Allow tagging of Documents when uploading

7. Allow Searching of Documents

8. Implement Analytics to monitor user engagement and behaviour
9. Facilitate document ratings by Users.

10. Create an FAQ page

Introduction

Overview

Share2Teach is introduced as a vibrant open educational resource (OER) project crafted to
nurture a global community of learners and educators. At its core lies the principle that
knowledge should be accessible, collaborative, and freely available. Share2Teach is a
testament to the power of collective endeavour, co-crafted by students under the guidance
of their facilitators.

The project was initiated by Dr. Chantelle Bosch, a dedicated lecturer and sub-area leader for
Blended Learning to Enhance Self-Directed Learning within the Research Unit Self-Directed
Learning at the North-West University (NWU). Alongside her, Prof. Dorothy Laubscher, the
chair-holder of the UNESCO Chair on Multi-modal Learning and OER, has played a pivotal role
in shaping the vision and trajectory of Share2Teach.

Together, a platform has been cultivated where diverse educational resources are brought to
life, crafted by students for students. From comprehensive semester planning documents to
topic-specific insights, Share2Teach offers a wide array of materials tailored to enhance self-
directed learning through cooperative learning and project-based teaching strategies.

Share2Teach serves as a beacon for educational innovation, extending an invitation to
educators and learners worldwide to contribute, explore, and evolve within this open,
inclusive community. Joining this journey means participating in the endeavour to transform
learning into a shared adventure, dismantling barriers and erecting bridges toward a more
knowledgeable and interconnected world.

Operating Environment

The system will be web-based, and only allow access through a web browser using the internet.
This system will make use of technologies supported by most of the latest desktop and desktop-
like browsers and should allow for a seamless user experience. Mobile compatibility might be
supported, but the system will not be optimised for mobile usage.

User Roles

Four user groups have been identified. They are presented as follows:
1. Admin

a) This user role represents the project owner and/or sponsor and the developers
maintaining the system. This user has unrestricted access to all components of the
system. The only unique component that this user has access to is the analytics
component. Access to this user role is tightly controlled.

2. Moderator

a) This user role represents a subset of subject experts as selected by the project
owner and/or sponsor. This user has access to the following features:

i Document Searching
ii. Document Viewing

iii. Document Contribution

iv. Document Rating

V. Using the FAQ

Vi. Moderating Documents
3. Educator

a) This user role represents any user who registers for an educator’s account. This
user has access to the following functionality:

i Document Searching
ii. Document Viewing
iii. Document Contribution
iv. Document Rating
V. Using the FAQ
4. Open Access User

a) This user role represents any user that accesses the site and does not sign in. This
user has access to the following functionality:

i Document Searching
ii. Document Viewing

iii. Document Rating

.E.

Using the FAQ

Overview of Functional Requirements

The following Functional Requirements have been stipulated by the client:

-Account Creation and Secure Sign-in

-File Uploading & Storage

-File Moderation (Gate keeping, reviewing, approving/denying of documents)
-File Reporting

-Pre-pending Watermark/License to files

-Tagging of Documents when uploading (Metadata)

-Searching of Documents

-Analytics to monitor user engagement and behaviour

‘Document Ratings

‘FAQ page

Overview of Data Requirements

The following Data Requirements have been stipulated by the client:

‘File Storage

‘File Metadata

-File Ownership

‘Moderation History

-User Data - Account Creation
-User Analytics

Overview of Product and Technical Requirements

This section is meant to outline the technical requirements for the development of a web
application designed to provide free access to educational resources for students from
various backgrounds. Roles including educators, moderators, open access users and admins
will manage and interact with the content, based on the assigned permissions. It details the
technologies, architecture, and implementation strategies to be used by the development
team.

Application

This project will deliver an application that users can interact with in the form of a web app.
This application will replace an existing Google pages application that has a familiar look and
feel. This application will form the main way in which users will interface with the system.

Data Storage

The system needs to store different types of data:

e Document Storage: Uploaded documents will be kept in a file storage system.

e Document Metadata: Information like subject, grade, and keywords, along with
document ratings and storage locations, will be stored in an SQL database.

e User Data: User login details, roles, and activity logs for analytics and audits will
be securely stored.

e FAQ: Frequently asked questions and answers will be managed in a database.

Security

1. Verification and Validation: This system will make use of HTTP-only cookies, JWTs
and encrypted passwords for making sure that users are only able to access and
modify the content that they are authorized to, and to ensure that user accounts are
secured.

Backend

1. API: This system will provide a server listening for requests from the application.
Request behaviour will be moderated using an API that will abstract away the
complex interactions from the application with the data. It should be documented
using a framework like Swagger/OpenAPI.

Architectural Requirements

1. Hosting: This application will have to be hosted on a web hosting platform that could

either be an in-house bare metal server or a 3rd party service such as AWS, Microsoft
Azure, Google cloud.

Constraints
Compatibility: The application must be a web app, accessible via modern browsers
(Chromium/V8 support required, WebKit/Firefox optional).

Open-source 3rd party libraries: All technologies and libraries used for functional applications
(such as architectural, framework, and library technologies) with the exception of the hosting
costs must be fully free, open-source.

Modularity, Extendibility, Expandability: The constituents of the code architecture must be
modular and loosely coupled in support of high loads and future expansion.

Security: The system must adhere to common security standards for secure data storage and

8

transmission.

Time: The current iteration of the project has one semester allocated for completion, which will
conclude on the 16th of October 2024.

Version Control: The software will use git and GitHub for version control and collaboration. Each
member needs to prove a similar level of contribution to the project.

Assumptions

The client will be available for regular demonstrations and feedback.

The requirements outlined in this document dictate the scope of the project that will not
undergo significant change.

The existing web platform will be extended, but not replaced.

There will exist at least one stable branch that will always be ready for the production
environment.

Dependencies
3rd party libraries: This project will make use of a vast array of 3rd party software for each part of
the system.

Hosting platform: The project will require servers for hosting the application, the data stores, and
the API gateway. The addition of load balancers may become required.

Stakeholder Input: Regular feedback on stakeholder requirements will direct the project
throughout Its lifecycle.

Guidelines

Coding Standards: Code must follow language-specific conventions.

Commenting and Documentation: Concise, descriptive comments are expected in the code. All
functionalities must be documented thoroughly.

Version Control: GitHub will be used to host the project source code. One branch will be named
something like ‘stable’ that can be easily identified and will always be production ready.

Unit Testing: Write unit tests for non-trivial source code.

User Documentation

User Manuals: The user will be provided with a detailed guide on how to use the application that
covers all the previously discussed features.

FAQ: The main site will contain an FAQ section that will provide users with access to frequently
asked questions and their suggested answers. FAQ's should be stored in a database and be
retrieved for the site.

Video Demonstration: The stakeholders and users will be provided with a video that
demonstrates how to use the system and its features.

Requirements

External Interface Requirements

User Interfaces

The following table contains a preliminary list of the identified User Interfaces required in the
system. This list is non-exhaustive, and subject to change. The "flow" through the system as
described in the "Links to" column is considered to be the optimal flow through the system
as currently described. As Developers develop the system, more interfaces may be identified,
which could lead to changes in the flow through interfaces. It is also important to note that
the "flow" is only 'positive' and does not account for when a user may encounter errors or
issues with the system ('negative' flow). It is up to the developers to account for this

'negative’ flow.

No | User Interface | Description Links to
Name
1 Landing The main page the user sees. Presents the user with | All
hyperlinks to the majority of the screens listed
below.
2 Subject View This page is subject specific. It allows further 3,4,13,
searching/viewing of documents within a subject.
3 Search This page allows for searching of documents based 4,13
(Results) on tags created when the documents are uploaded.
It provides optional filters along with the search
results.
4 Contribute This page allows a user to contribute documents 13,
and to tag them while doing so.
5 Other useful This page directs the user to other OER resource All
OER's pages.
6 Contributors This page displays all the contributors to the All
project. This page needs to be updated to be
dynamic.
7 About Us This page provides information about the project, All
the project website, and the project founders.
8 Self-Directed This page provides links to Self-Directed Learning All
Learning resources available to users.
9 Moderate This page will present a user with all the files
uploaded by users, that need to be moderated.
10 | Account This page allows users to create accounts.
Creation
11 | Password Reset | This page allows users to reset their passwords
should they forget them.
12 | Analytics This page allows administrators to view the

10

analytics information gathered on the website.

13 | FAQ This page provides users with answers to some All
frequently asked questions.
14 | User This page allows an administrator to change the
Management access levels of users as well as view all the users on

the system

Hardware Interfaces

The system requires the following Hardware interfaces.

Type Description Interactions

Keyboard-like HID | A HID that is used to input keystroke
data into the website’s text fields and
interact with buttons.

Mouse-like HID A HID that is used to select buttons, | Selecting (Focusing) on
fields, and files on the website. buttons and fields.

Software and Communications Interfaces

The system requires the following types of Software interfaces. This list is non-specific, non-

exhaustive, and subject to change as the development process proceeds.

Type

Description

Interactions

Database

Relational or non-relational databases used to store
documents, user data, transaction logging etc.

Read/Write, back up and
restore.

File Storage System

The primary file storage for any documents uploaded to
the system.

Read/Write, back up and
restore.

API RESTful API: Primary access to services and features of the | The front-end application
system will be accessed through this APl gateway. will make requests and
receive responses in JSON.
OAuth2 is suggested for
security.
Hosting Operating | Ubuntu LTS release: The underlying operating system for | The Operating System will
System the application and related services. be responsible for
providing a runtime for the
entire application and
servers.
Framework A web application framework for building the frontend | Ul rendering and user
user interface. input for enabling
communication with the
API gateway.
Tool Docker: A platform for developing, building and shipping | Builds in CI/CD pipeline,
and running software in containers. Auto-scaling for load
balancing.
Authentication Users will need to be authenticated for access to the | Users will provide their
system. login credentials in the
frontend application for

authentication.

The git version control platform will be used on GitHub to

Branching/Push and pull

11

Version Control requests will be made via a
shell or on GitHub’s

website.

facilitate version control and developer collaboration.

Functional Requirements

This list contains the functional requirements for the system to be developed during the
project's execution. This list is non-exhaustive and should be expanded upon as the
developers identify a need.

Purpose/Description

Account Creation

Inputs FName, LName, Email, Password, Affiliation (opt), Credentials
(Opt)

Processing Required Field check, Email-type check, password match check

Outputs Failure: Required Fields empty, invalid email type, passwords

don’t match.

Success: Account creation successful

Purpose/Description

Sign In

Inputs Email, Password

Processing Required Field Check, email type check, user exist check,
password match check

Outputs Failure: Email or password does not match; required fields empty

Success: sign in successful.

Purpose/Description

File Uploading & Tagging

Inputs User File, File type, file name, subject, grade, date created,
Processing Required field check, file size check, file type check,
Outputs Failure: File too large, incorrect file type, required fields empty,

file upload failed,

Success: file upload successful.

Purpose/Description File Storage

Inputs none

Processing File storage

Outputs Failure: Server-side logging

Success: Server-side logging

12

Purpose/Description

File Moderation

Inputs File approval/disapproval, comments
Processing updating file approval status
Outputs Failure: Could not complete action

Success: Action Complete

Purpose/Description

File Rating

Inputs 0-5 star rating for document
Processing Rating entry made in database
Outputs Rating visible to user

Purpose/Description

File Reporting

Inputs Report button selected, reason selected
Processing Report entry made in database
Outputs “Report submitted” message

Purpose/Description

Watermark/License adding

Inputs File uploaded
Processing Watermark/License is Prepended
Outputs File with watermark/license is saved in file storage

Purpose/Description

Document Search

Inputs Keywords entered by user
Processing Database tags searched for keywords.
Outputs Files presented to user.

Purpose/Description

User Analytics

Inputs User actions on system

Processing Data relating to actions written to database.
Outputs none

Purpose/Description FAQ

Inputs none

13

Processing

FAQ's Fetched from Database

Outputs

List of FAQ's with answers provided

Purpose/Description

Password Reset

Inputs Password Reset request, email address, verification
cookie/session/token, new password

Processing Email verification, token verification and password match
verification

Outputs Failure: Failure message.

Success: Email Verification Message to generate token, success
Message

Non-Functional Requirements

Performance

Scalability: The system should be able to scale horizontally to handle a growing
number of users and increased data load without performance degradation. This
includes the ability to add more instances of the web server and database as

needed.

Throughput: The system should be able to support multiple concurrent users
without a significant drop in performance.

Caching: Caching mechanisms should be implemented to reduce server load and
improve response times.

Safety

Data Integrity: Ensure all requests are processed accurately and data is consistently
maintained across the system. Implement database constraints and transactional integrity

checks.

Fault Tolerance: The system should be able to recover from hardware or software failures.
This includes automatic failover mechanisms and redundancy in critical components.

Error Handling: Implement comprehensive error handling throughout the application. All
errors should be logged, and appropriate user-friendly messages should be displayed to the

users.

Backups: Regular backups of all critical data should be performed and stored securely. Ensure
that a disaster recovery plan is in place and tested periodically.

Security

Authentication and Authorization: All users must be authenticated using a secure
authentication mechanism (e.g., OAuth2, JWT). Implement role-based access control
to ensure users only have access to the resources they are authorized to use.

Data Encryption: All sensitive data, both at rest and in transit, must be encrypted
using industry-standard encryption protocols).

Security Audits: Security audits and penetration testing can be used to identify and
mitigate vulnerabilities. Follow best practices and comply with relevant security

14

standards and regulations.

Software Quality

Code Quality: Ensure high code quality by following coding standards and best
practices. Conduct regular code reviews.

Testing: Implement a comprehensive testing strategy that includes unit tests,
integration tests, system tests, and user acceptance tests. Aim for high test coverage
to ensure the reliability of the codebase.

Continuous Integration/Continuous Deployment (Cl/CD): Utilize CI/CD pipelines to
automate the build, testing, and deployment processes. This helps in detecting and
fixing issues early and ensures that changes are delivered quickly and reliably.

Documentation: Maintain up-to-date and comprehensive documentation for the
entire system, including code comments, APl documentation, user manuals, and
operation guides.

Usability: Design the application with a user-centric approach, ensuring that it is
intuitive and easy to use. Conduct usability testing to gather feedback and make
necessary improvements.

Maintainability: Ensure the system is easy to maintain by modularizing the code,
following design patterns, and keeping dependencies up to date. Document the
architecture and design decisions to aid future maintenance efforts.

15

Product and Technical Requirements

This section is meant to outline the technical requirements for the development of a web
application designed to provide free access to educational resources for students from
various backgrounds. Roles, including educators, moderators, open access users, and admins,
will manage and interact with the content, based on the assigned permissions. It details the
technologies, architecture, and implementation strategies to be used by the development
team.

The system will provide a web application that the primary users will interact with for
downloading, uploading, and approving documents. These documents can be tagged with
descriptions and other relevant information that will be used to index and identify the
documents in a central data store.

The system will implement a user access and upload policy that will allow only authenticated
users to approve document upload requests. In this way, document quality can be ensured.
This will require users to sign up to the system and apply for moderator privileges. This user
data will be stored in the data store, and any sensitive user information will be encrypted.

For all data processing and preparation, a backend server will be hosted that will be
responsible for all data processing and aggregation. This backend server will provide access
to data in the form of an API gateway.

The entire system will need to be hosted on a platform that will give all the users access to
the system. Some options are available for in-house hosting as well as cloud providers.

Application

This project will deliver an application that users can interact with in the form of a web app.
This application will replace the existing Google pages application but retain the familiar look
and feel. This application will form the main way in which users will interface with the
system.

Data Storage
The system will require persistent storage for the following:

1. Document Storage: All uploaded documents will need to be stored in a file storage
system.

2. Document Metadata: When a user is in the process of uploading a document, they
will add some metadata about the document such as the subject group, grade, key
words etc. This data, the document ratings and a reference to the location of the
actual document in the file storage system will need an entry in a database. The
database paradigm suggested for this is SQL, since we are dealing with highly
structured data, where data aggregation, sorting and grouping will be very important
when users search and filter for documents.

3. User Data: All user-related content, such as their login information and the
associated roles need to be stored for user verification and identification. For
analytics and auditing purposes, all user actions will be recorded in a database with
timestamps and actions.

4. FAQ: Frequently asked questions and answers to these will be stored in a database.

Security

2. Verification and Validation: This system will make use of HTTP-only cookies, JWTs
and encrypted passwords for making sure that users are only able to access and
modify the content that they are authorized to, and to ensure that user accounts are

16

secured.

Backend

2. APl Gateway: This system will provide a server listening for requests from the
application. Request behaviour will be moderated using an API gateway that will
abstract away the complex interactions from the application with the data.

Architectural Requirements

2. Hosting: This application will have to be hosted on a web hosting platform that could

either be an in-house bare metal server (your laptop) or a 3rd party service such as
AWS, Microsoft Azure, Google cloud.

Constraints

Compatibility: The application must be a web app, accessible via modern browsers.

Open-source 3rd party libraries: All technologies and libraries used for functional applications
(such as architectural, framework, and library technologies) except the hosting costs must be fully
free, open-source.

Scalability: The constituents of the architecture must be modular and loosely coupled in support
of high loads and future expansion.

Security: The system must adhere to common security standards for secure data storage and
transmission.

Budget: The budget allocated will determine the hosting platform for the project.

Time: The current iteration of the project has one semester allocated for completion, which will
conclude on the 16th of October 2024.

Version Control: The software will use git and GitHub for version control and collaboration.

Assumptions

The client will be available for regular demonstrations and feedback.

The requirements outlined in this document dictate the scope of the project that will not
undergo significant change.

The existing web platform will be extended, but not replaced.

There will exist at least one stable branch that will always be ready for the production
environment.

Dependencies
3rd party libraries: This project will make use of a vast array of 3rd party software for each part of
the system.

Hosting platform: The project will require servers for hosting the application, the data stores and
the API gateway. The addition of load balancers may become required.

Stakeholder Input: Regular feedback on the stakeholder requirements will direct the project
throughout Its lifecycle.

17

Guidelines

Coding Standards: Code must follow language-specific conventions.

Commenting and Documentation: Concise, descriptive comments are expected in the code. All
functionalities must be documented thoroughly.

Version Control: GitHub will be used to host the project source code. One branch will be named
something like ‘stable’ that can be easily identified and will always be production ready.

Unit Testing: Write unit tests for non-trivial source code.

User Documentation

User Manuals: The user will be provided with a detailed guide on how to use the application that
covers all the previously discussed features.

FAQ: The main site will contain an FAQ section that will provide users with access to frequently
asked questions and their suggested answers. FAQ's should be stored in a database and be
retrieved for the site.

Video Demonstration: The stakeholders and users will be provided with a video that
demonstrates how to use the system and its features.

18

MoSCoW Breakdown

Categories
Must Have

Should Have

Could Have

Won't Have

Item

User Verification

File Uploading

File Storage

Document Reporting

File Metadata capturing
Document Searching
Document ratings

FAQ Page

File Moderation

Automatic Metadata generation
PDF Conversion

Pre pending Licence
Docker/Podman Deployment
Google Analytics integration
Full WebKit & Firefox Support

Firebase/Superbase Backend

19

Category Weight
40%

35%

25%

- <100%

Suggested Technologies

Popular Tech Stacks

As third-year students delving into software engineering, it's crucial to appreciate the
significance of exploring and understanding new technologies. The tech landscape is ever-
evolving, and staying updated with the latest tools and frameworks can dramatically
influence your ability to create efficient, scalable, and maintainable applications. Here's why
it's vital and how you can navigate this exploration effectively.

Pure Frontend (No serving of templates from backend)
e Web Based:
O React
o Angular
o Vue
o Svelte
o Astro
o HTMX
o Solid
o Remix
e Mobile:
O React native
o Android Java
o Android Kotlin

o Swift 10S (BEWARE YOU NEED A MAC AND IPHONE TO WORK IN
THIS BECAUSE YOU NEED XCODE)

e Cross platform:

o lonic
o Flutter
o .Net MAUI

o Kotlin Multi platform

20

e Server side or MVC frameworks are a hybrid approach where the frontend
and backend are intertwined into one codebase and there is tight coupling,
which has upsides and downsides depending on the situation or context

o Laravel
o Django
o Ruby on Rails

o Spring MVC Thymeleaf (Spring has a lot of projects with the word
spring, so the MVC thymeleaf is important)

o Golang with Templ

Pure backend

e Expressjs

e Fastify

e Spring boot
e _NET

e Golang Gin
e Golang CHI

e Python Flask

Database choices

When choosing a database, it's crucial to consider how the specific use case affects
our decision:

Performance

® Pros: Some databases, like Redis or Cassandra, are optimized for high-speed read
and write operations, making them suitable for real-time applications.

e Cons: High-performance databases might require more resources or be more
complex to manage.

Scalability

® Pros: NoSQL databases like MongoDB and Cassandra are designed to scale
horizontally, easily handling large amounts of data and high traffic.

e Cons: Relational databases like PostgreSQL or MySQL might require more complex
sharding or replication strategies to scale effectively.

Consistency vs. Availability

e Consistency: Relational databases ensure data consistency but might face availability
issues under high load.

21

O Pros: Ensures data accuracy and integrity.
O Cons: Might not be as performant or available in distributed systems.

e Availability: NoSQL databases often prioritize availability and partition tolerance
over consistency (as per the CAP theorem).

O Pros: Better performance and uptime.

O Cons: Potential data inconsistencies (eventual consistency).

Data Model Flexibility

® Pros: Document-based databases like MongoDB offer flexible schemas, allowing for
easy updates and changes to the data model.

e Cons: This flexibility might lead to inconsistent data structures if not managed
properly.
Query Complexity and Support

® Pros: SQL databases provide powerful query capabilities with joins, transactions, and
complex queries.

e Cons: NoSQL databases might require more effort to perform complex queries and
may lack advanced querying features.
Transaction Support

® Pros: SQL databases support ACID (Atomicity, Consistency, Isolation, Durability)
transactions, ensuring reliable and consistent transactions.

e Cons: NoSQL databases may not fully support ACID transactions, focusing on
eventual consistency and partition tolerance instead.

Ecosystem and Tooling

® Pros: Mature databases like MySQL, PostgreSQL, and MongoDB have robust
ecosystems, extensive documentation, and a wide range of tools for management
and monitoring.

e Cons: Newer or niche databases might lack comprehensive tooling and community
support.

Cost

® Pros: Open-source databases like MySQL and PostgreSQL can reduce licensing costs,
while managed database services (e.g., AWS RDS, Google Cloud Firestore) can lower
operational overhead.

e Cons: Proprietary databases or large-scale managed services might incur higher
costs, particularly as data and traffic grow.
Use Case Suitability

® Pros: Some databases are tailored for specific use cases, such as graph databases
(e.g., Neodj) for relationship-focused data or time-series databases (e.g., InfluxDB)
for time-stamped data.

® Cons: General-purpose databases might not be optimized for specific use cases,
leading to suboptimal performance.

22

Analytics and Data Analysis

® Pros: Databases like PostgreSQL and MySQL offer strong analytical capabilities with
advanced SQL functions, while specialized databases like Amazon Redshift or Google
BigQuery are designed for large-scale analytics.

e Cons: General-purpose databases may struggle with performance under heavy
analytical workloads compared to specialized solutions.

ETL (Extract, Transform, Load) Processes

® Pros: Databases designed for ETL, like Apache Hadoop or Amazon Redshift, can
efficiently handle large volumes of data transformation and loading. Tools like
Apache NiFi or Talend integrate well with various databases for seamless ETL
workflows.

e Cons: Using a general-purpose database for ETL can lead to performance bottlenecks
and increased complexity in managing the data pipeline.

Understanding these trade-offs is crucial for us to make informed decisions. The right
database choice can significantly impact our application's performance, scalability,
and maintainability. We need to evaluate our project's specific needs, such as data
volume, query complexity, and consistency requirements, to select the most suitable
database technology. By considering these factors, we can ensure that we make the
best choice for our particular use case. For instance, if our company wants to
perform extensive data analytics and ETL processes, we might prioritize databases
with strong analytical capabilities and efficient ETL support.

Things to consider

When deciding on a Technology it is key to look at usage first of all, because industry usage
means there are big corporates backing a piece of technology, and in the case of frontend
this is more crucial because there are many many many ways of taking on problems, and
each framework/library comes with its own set of problems and challenges.

Example:

React is simple to pick up and simple to use, but complexity arises quickly when following a
pure component-based design, which then causes state management issues where you will
need to learn Redux. Conversely a Framework like Next or Angular is harder to just pick up ,
but has more features baked into to framework and follows a very opinionated approaches.

You know how fast you learn and you know what your appetite is for challenges, pick
accordingly and read about different frameworks, as a software engineer you will be put in
situations where you will need to make decisions based on how a project is evolving, and
your project manager and product owners have no technical knowledge and will look to
engineers to make educated decisions, and in smaller companies you will not have the luxury
of a solutions architect or competent experienced technical lead. Situations such as caching,
database choices, cloud provider choices , logging monitoring, metrics, Test driven
development, domain driven development all have upsides and downsides and
understanding the tool and the various implementations that are aiming at solving the same
problems allows you to make good educated choices and expands your capabilities as an
engineer.

23

When deciding on a technology stack, several factors come into play:
1. Usage and Industry Support

a. Opt for widely-used technologies as they typically have robust
community support and backing by large corporations. This ensures
better resources, regular updates, and reliability.

2. Learning Curve

a. Assess the complexity of the technology. Some, like React, are
straightforward initially but become complex with advanced usage.
Others, like Angular, might be harder to pick up but offer extensive
built-in features.

3. Project Requirements and Context

a. Consider the specific needs of your project. For instance, server-side
rendering (SSR) might be crucial for SEO in web apps, making
frameworks like Next.js desirable.

4. Personal and Team Capabilities

a. Reflect on your learning speed and willingness to tackle challenges.
Your choice should align with your team's strengths and the project's
requirements.

5. Future Scalability and Maintainability

a. Technologies should not only meet current needs but also scale with
your project. Consider long-term maintenance and potential for future

enhancements.
Resources:
e Web Based:
o React

m https://www.youtube.com/watch?v=MHN66JJH5zs&list=PLSsAz5wf2I
kK ekd0) 44KG6QoXetZza

o Angular:

m https://www.youtube.com/watch?v=3gBXWUpoPHo&t=3060
1s

o Vue:
m https://www.youtube.com/watch?v=pgWZLS75Nmo&t=16s
o Svelte:

m https://www.youtube.com/watch?v=wWRhX_Hzyf8

24

https://www.youtube.com/watch?v=MHn66JJH5zs&list=PLSsAz5wf2lkK_ekd0J__44KG6QoXetZza
https://www.youtube.com/watch?v=MHn66JJH5zs&list=PLSsAz5wf2lkK_ekd0J__44KG6QoXetZza
https://www.youtube.com/watch?v=MHn66JJH5zs&list=PLSsAz5wf2lkK_ekd0J__44KG6QoXetZza

o Astro:

m https://www.youtube.com/watch?v=F2pw1C9eKXw&list=PLoq
ZcxvpWzzeRWF8TEpXHtO7KYY6cNJeF&index=1

o Solid:

m https://www.youtube.com/watch?v=uPXn953107Q&list=PL4c
UxeGkcC9gU_GvFygZFuOaBysPilkbB

Mobile:
o React native:
m https://www.youtube.com/watch?v=ZBCUegTZF7M
o Android Java

m https://www.youtube.com/watch?v=cGi9wL8Esw4&list=PL6Q9
UqV2Sfli4eRuXtfWU9InPJ5YIdLXbG

o Android Kotlin

m https://www.youtube.com/watch?v=BxM2DayeOBE
o SwiftIOS:

m https://www.youtube.com/watch?v=fTGA8cjbf5Y

e Cross platform:

o lonic

m https://www.youtube.com/watch?v=K7ghUiXLef8
o Flutter

m https://www.youtube.com/watch?v=VPvVD8t02U8&t=21341s
o .Net MAUI

m https://www.youtube.com/watch?v=n3tA3Kub65_8

o Kotlin Multi platform

e Server side or MVC frameworks are a hybrid approach where the frontend

and backend are intertwined into one codebase and there is tight coupling,
which has upsides and downsides depending on the situation or context

o Laravel

m https://www.youtube.com/watch?v=SqTdHCTWqgks

25

o Django

m https://www.youtube.com/watch?v=7ZpKI3U-
arN8&list=PL4cUxeGkcC9iqfAag3a_BKEX1N43uJutw

o Ruby on Rails
m https://www.youtube.com/watch?v=Z0Xn1iiiEZE

o Spring MVC Thymeleaf (Spring has a lot of projects with the word
spring, so the MVC thymeleaf is important)

m https://www.youtube.com/watch?v=VqptKé icjk&list=PL82Cé6-
O4XrHejlASdeclsroNEbZFYo X1

Pure backend

Expressjs

o https://www.youtube.com/watch?v=P6RZfI8KDYc&list=PL_cUvD4qzbk
wjmjy-KjbieZ8J9cGwxZpC

Spring boot

o https://www.youtube.com/watch?v=Nv2DERaMx-
48&list=PLzZUMQwCOrQTksiYgoumAQxuhPNa3HgasL

NET
o https://www.youtube.com/watch?v=AhAxLiIGC7Pc&t=1674s
Golang Gin

o https://www.youtube.com/watch?v=0iPdFkMZ58Q&list=PLDZ_9qD1h
kzMdre6oedUdyDTgoJYq-_AY

Golang CHI
o https://www.youtube.com/watch?v=JBrF5yviZKE
Python Flask

O https://www.youtube.com/watch?v=z3YMz-Gocmw

Database

e Choosing the right database:

O https://www.youtube.com/watch?v=kkeFE6iRfMM

O https://www.youtube.com/watch?v=W277fbCLSTw

O https://www.youtube.com/watch?v=9mdadNspP M

26

https://www.youtube.com/watch?v=VqptK6_icjk&list=PL82C6-O4XrHejlASdecIsroNEbZFYo_X1
https://www.youtube.com/watch?v=VqptK6_icjk&list=PL82C6-O4XrHejlASdecIsroNEbZFYo_X1
https://www.youtube.com/watch?v=VqptK6_icjk&list=PL82C6-O4XrHejlASdecIsroNEbZFYo_X1
https://www.youtube.com/watch?v=z3YMz-Gocmw
https://www.youtube.com/watch?v=kkeFE6iRfMM
https://www.youtube.com/watch?v=W2Z7fbCLSTw
https://www.youtube.com/watch?v=9mdadNspP_M

SOME EXTRAS FOR THOSE INTERESTED

(@)

Designing good API’s

m https://www.youtube.com/watch?v=_gQaygjm hg

o Software acronyms:

m https://www.youtube.com/watch?v=cTyZ hbmbDw

o Whatis an API?

m https://www.youtube.com/watch?v=ByGJQzIzxQg

o What is full stack development:

m https://www.youtube.com/watch?v=7NaeDBTRY 1k

o Vertical vs horizontal scaling of an app for higher load:

m https.//www.youtube.com/watch?v=dvRFHG2-uYs

o How git actually works:

m https://www.youtube.com/watch?v=e9InsKot SQ

o What is Docker:

B https://www.youtube.com/watch?v=Cs2j-Rjqg94

o Docker crash course:

m https://www.youtube.com/watch?v=pg1978LL06w&t=23s

o AWS cloud practitioner Course:

m https://www.youtube.com/watch?v=NhDYbskXRgc&t=6919s

o Whatis Cloud?

m https://www.youtube.com/watch?v=mxT233EdY5c

o What is AWS?

m https://www.youtube.com/watch?v=a9 D53WsUs

o Whatis Azure:

® https://www.youtube.com/watch?v=0PSHs71mTVU

o Azure cloud fundamentals certification course:

m https.//www.youtube.com/watch?v=5abffC-K40c

27

https://www.youtube.com/watch?v=_gQaygjm_hg
https://www.youtube.com/watch?v=cTyZ_hbmbDw
https://www.youtube.com/watch?v=ByGJQzlzxQg
https://www.youtube.com/watch?v=7NaeDBTRY1k
https://www.youtube.com/watch?v=dvRFHG2-uYs
https://www.youtube.com/watch?v=e9lnsKot_SQ
https://www.youtube.com/watch?v=Cs2j-Rjqg94
https://www.youtube.com/watch?v=pg19Z8LL06w&t=23s
https://www.youtube.com/watch?v=NhDYbskXRgc&t=6919s
https://www.youtube.com/watch?v=mxT233EdY5c
https://www.youtube.com/watch?v=a9__D53WsUs
https://www.youtube.com/watch?v=oPSHs71mTVU
https://www.youtube.com/watch?v=5abffC-K40c

o Devops vs Site reliability vs Platform engineering

m https://www.youtube.com/watch?v=an8SrFtJBdM

Free STUFF for students and other free stuff:

o Github Developer pro student pack

® https://github.com/education/students

o Intellij free student licenses:

m https://www.jetbrains.com/community/education/#students

o Free AWS skill badges from completing courses:

m https://aws.amazon.com/education/awseducate/

o Azure student Resources:

m https://azure.microsoft.com/en-
us/resources/students?activetab=pivot:githubtab

o Google cloud skill badges:

B https://cloud.google.com/learn/training/credentials

28

https://www.youtube.com/watch?v=an8SrFtJBdM
https://github.com/education/students
https://www.jetbrains.com/community/education/#students
https://aws.amazon.com/education/awseducate/
https://azure.microsoft.com/en-us/resources/students?activetab=pivot:githubtab
https://azure.microsoft.com/en-us/resources/students?activetab=pivot:githubtab
https://azure.microsoft.com/en-us/resources/students?activetab=pivot:githubtab
https://cloud.google.com/learn/training/credentials

Example Stacks, but this is interchangeable

Frontend

Backend

Database

File Storage

Comments

React

Node.js with

Express

MongoDB

SeaweedFS

Pros: Highly popular,
large community
support, fast
development with
JavaScript. Cons: Can
become complex with
state management,
callback hell in Node.js.

Angular

Spring Boot

(Java)

PostgreSQL

Ceph

Pros: Full-featured
framework, strong typing
with TypeScript, robust
backend with Spring
Boot. Cons: Steeper
learning curve, heavy-
weight compared to
other frameworks.

Vue.js

Laravel (PHP)

MySQL

Nextcloud

Pros: Easy to learn,
flexible, Laravel offers
elegant syntax and tools.
Cons: Less corporate
backing compared to
React/Angular, Laravel
can be slower than some
alternatives.

Flutter

Node.js with

Express

MySQL

Garage

Pros: Cross-platform
mobile development,
fast performance, real-
time database with
Firebase. Cons: Still
relatively new, less
mature than React
Native.

React
Native

Node.js with
Express and SSR
using Next.js

MongoDB

SeaweedFS

Pros: Cross-platform
development, server-side
rendering with Next.js,
popular and widely used.
Cons: Complexity with
SSR, learning curve for
Next.js.

Svelte

Python Flask

MySQL

Nextcloud

Pros: Small and fast, easy
to learn, lightweight
backend with Flask.
Cons: Less mature
ecosystem, less
corporate backing.

29

lonic with
Angular

.NET Core

SQL Server

Ceph

Pros: Cross-platform
development, enterprise
support with .NET,
powerful SQL Server.
Cons: Angular has a
steeper learning curve,
.NET can be heavy-
weight.

HTMX

Django (Python)

PostgreSQL

Nextcloud

Pros: Simple frontend
integration, beginner-
friendly Django, efficient
and scalable. Cons:
Limited features
compared to modern JS
frameworks, tight
coupling.

Astro

Golang with
Fiber

PostgreSQL

Garage

Pros: New but
straightforward, highly
performant backend with
Go. Cons: Less mature
ecosystem, limited
community support.

Vue.js

Ruby on Rails

MySQL

Ceph

Pros: Easy to learn,
convention over
configuration in Rails,
fast prototyping. Cons:
Performance may not
match that of other
backend frameworks,
less flexible.

React
Native

Golang Gin

PostgreSQL

SeaweedFS

Pros: Cross-platform
mobile apps, highly
performant Go backend.
Cons: Learning curve
with Go, fewer libraries
and tools compared to
Node.js.

Angular

ASP.NET Core

SQL Server

Garage

Pros: Enterprise-level
support, robust and
scalable, TypeScript.
Cons: Steeper learning
curve, heavy-weight
framework.

Svelte

Rust with Rocket

PostgreSQL

Nextcloud

Pros: High performance,
memory safety with
Rust, easy frontend with
Svelte. Cons: Steeper
learning curve for Rust,
smaller community.

30

Flutter Golang with Chi | PostgreSQL Garage Pros: Cross-platform
mobile, simple and

performant backend.
Cons: Flutter's learning
curve, less mature
ecosystem.
lonic PHP with | MySQL Ceph Pros: Cross-platform
Symfony development, flexible

PHP backend with
Symfony. Cons: PHP may
be less performant,
steeper learning curve
with Symfony.

Vue.js Node.js with | MongoDB SeaweedFS | Pros: Fast and
Fastify lightweight, easy

integration with Vue.

Cons: Smaller

community compared to
Express, learning curve

with Fastify.

React Kotlin with Ktor PostgreSQL Ceph Pros: Modern VM
language, highly
performant, strong
typing. Cons: Newer
ecosystem, fewer

resources and libraries.

Other Technologies to consider:
e Frontend: Svelte.
e Backend: Flask (Python), Springboot (Java, Kotlin, Groovy, you can choose).
e File Storage:, Ceph, Garage: https://garagehq.deuxfleurs.fr/
e Full Stack: Ruby on Rails, ASP .NET MVC.
e Android: Kotlin
e Apple: Swift

Please consider using some of these. Otherwise, at least use some combination of these
technologies.

Understanding the trade-offs when choosing a tech stack is crucial for several
reasons:

1. Informed Decision Making

31

a. Engineers often face decisions that impact the entire project lifecycle.
Being aware of the pros and cons helps in making choices that align
with project goals and constraints.

2. Adaptability
a. The tech landscape changes rapidly. Familiarity with multiple

technologies enhances your ability to adapt and integrate new
solutions as needed.

3. Optimization

a. Different stacks offer varying levels of performance, scalability, and
maintainability. Knowing these nuances allows you to optimize your
application for better user experience and resource management.

4. Leadership and Guidance

a. As you progress in your career, you'll be expected to guide less
experienced team members. A broad understanding of tech stacks
empowers you to mentor effectively and lead projects confidently.

In summary, exploring new technologies enriches your skill set and equips you to
tackle diverse challenges. Embrace this exploration with curiosity and critical thinking
to become a versatile and proficient software engineer.

32

33

Timeline Outline

Date

Work to be evaluated

27 October

Swagger/OpenAPI BackEnd
Database

File Storage

Testable Endpoints

+ Best Practices

+ Use of Project Management Tools

16 October

Ul Design (Wireframes)

Ul Creation

Ul & API Interacts

User Analytics

+ Best Practices

+ Use of Project Management Tools

34

Appendices

o

Glossary of Terms

terms and acronyms used within
this document that pertain to this
project.

B Issue List A list of outstanding issues within
this document to be rectified
before the next revision.

C Analysis Models A document containing various

diagrams generated during the
systems analysis and design phases

35

A Glossary containing all unique

Appendix A: Glossary of Terms

Term Definition

HID Human Interface Device. A method by which a human
interacts with an electronic information system either by
inputting data or receiving output.

Metadata Data that provided information about one or more aspects

of data. Used to summarise basic information about data
to make tracking and manipulate data easier.

36

Appendix B: Issue List

Date Issue Description Version Resolved

37

Analysis Models

Appendix C

—

Administrator

Educator

_mums Alccess User

_ Request FAQ
Page

Request
Questions

Return
_ Questions

FAQ Page Retumed

Select Query

—Search Query

_ Return S /Fail zﬁwwwnmL‘

1 Retumn ion status’

L SuccessiFailure
Mesage

File Retumned

Document

Document ID +
Rating
equest File

Return File

'
Provide Document

le Metadata-

Document File Uploaded-

Request

Unmoderated
Documents

Return
Unmoderated
Documents

Document Metadata Captured———! —
R st Document Rati
- Retum Document Rating’
— —f— — — — — — — — — — —
RequestU D
Return | Documents:

Update Approval Statu

38

Moderator

Open Access User

Share2Teach

Moderate
Documents

Share2Teach

ch For
AT S

39

Moderator

Educator

Share2Teach

Moderate
Documents

Share2Teach

